
1568963561 1

Abstract—In this paper, we propose a heterogeneous trans-

coding method of converting an H.264 video bitstream into an
MPEG-4 video bitstream. When the H.264 video bitstream is
transformed into the MPEG-4 video bitstream, the conversions
between the H.264 block types and the MPEG-4 block types are
performed by minimizing the distortion, and 4 × 4 block-based
motion vector mapping is performed. The proposed transcoder
runs 5.2 times faster than the cascaded transcoding method, while
maintaining the similar PSNR (peak-signal-to-noise ratio).

Index Terms—Transcoding, H.264, MPEG-4, Motion Estima-
tion, Motion Compensation.

I. INTRODUCTION
ULTIMEDIA services for network environments, such
as video communications, digital libraries and video
adapt- ations, are becoming increasingly prevalent. In

multimedia applications, it is often necessary to adapt the
bitrates of the video bitstream to the bandwidths of the different
kinds of communication channels. Therefore, various video
transcoding techniques [1,2] have been developed to convert
one comp- ressed bitstream format into another, while
guaranteeing the QoS (quality of service). These different
transcoding techno- logies are commonly classified according
to the techniques which are used to perform the transcoding in
the pixel-domain [3] and in the DCT (Discrete Cosine
Transform)-domain [4]. So far, homogeneous transcoding
methods have been developed to perform conversions from
MPEG-2 to MPEG-2 [4] and H.263 to H.263 [5].

In this paper, a pixel-domain transcoding method is proposed
for conversion between H.264 (ITU-T video coding standard
and ISO/IEC MPEG-4 Part 10 Advanced Video Coding Stand-
ard) [6] and MPEG-4 [7], because DCT-domain transcoding
cannot be employed in this case, due to the nonlinear loop
filtering [8] included in the H.264 standard. In terms of the
video quality, the best transcoding method is a cascaded
pixel-domain transcoding technique that first decodes the
encoded bitstream completely and then re-encodes the decoded
video. However, using this method increases the computational
complexity, because re-encoding the decoded video requires all
of the video coding tools to be utilized. Therefore, a low
complexity transcoder is developed which reuses the incoming

The authors are with the Department of Internet Engineering, Sejong

University, 98 Kunja-Dong, Kwangjin-Gu, Seoul 143-747, Korea. Also they
are with DMS Lab.

E-mail: yllee@sejong.ac.kr

information contained in each macroblock (MB) in the H.264
decoder. However, in order to take into account the case of
small MPEG-4 compatible mobile devices which cannot
decode the H.264 bitstream, a transcoder is required to convert
the compressed bitstream format before it is transmitted to the
MPEG-4 compatible mobile device.

The new transcoding method, which operates by block type
conversion from the H.264 blocks to the MPEG-4 blocks is
described in Section II, along with its motion vector (MV)
mapping technology. The experimental results and analyses of
the proposed algorithm are provided in Section III, and our
concluding remarks are given in Section IV.

II. PROPOSED TRANSCODING METHOD
As shown in Table I, the H.264 standard has some features

which differ from those of the MPEG-4 standard, such as the
4 × 4 integer transform, multiple reference frames, universal
variable length coding (UVLC) or context-adaptive variable
length coding (CAVLC), and the various block types used for
motion estimation (ME) and motion compensation (MC). The
H.264 standard performs quarter-pixel ME/MC for the seven
variable blocks, as shown in Fig. 1(a). Therefore, there are
many different block modes in each MB, including the seven
Inter modes, and the Intra16× 16, Intra4× 4 and SKIP modes,
as shown in Fig. 1(a). On the other hand, the MPEG-4 standard
performs half-pixel ME/MC for the 16× 16 and 8× 8 blocks of
each MB, with the result that each MB contains the Inter16× 16,
Inter8× 8, Intra and SKIP modes, as shown in Fig. 1(b).

As shown in Fig. 2, in cascaded pixel-domain transcoding,
the H.264 bitstream is first decoded by the H.264 decoder, and
the decoded video is then re-encoded by the MPEG-4 encoder,

H.264 to MPEG-4 Transcoding Using Block
Type Information

Jae-Ho Hur and Yung-Lyul Lee

M

TABLE I
CODING TOOLS OF THE H.264 BP(BASELINE PROFILE) AND THE MPEG-4

SP(SIMPLE PROFILE).

Coding Tools MPEG-4 H.264

Transform 8 × 8 DCT 4 × 4 Integer DCT

MC Unit 16× 16, 8× 8
16× 16, 16× 8,

8 × 16, 8× 8, 8× 4,
4 × 8, 4× 4

MC Accuracy 1/2 pel 1/4 pel

VLC Table Separable Table Universal VLC,
CAVLC

Intra Prediction AC/DC Prediction Spatial Prediction

Inner loop filter None Deblocking Filter

1568963561 2

without re-using the information contained in each MB. The
cascaded transcoder requires high computational complexity,
because it must carry out ME/MC and the decisions for the MB
modes again.

A. Block Type Conversion and Motion Vector Mapping
Performing brute-force ME and mode decision for each MB

causes a transcoder to have high computational complexity. To
reduce this computational complexity, the incoming motion
vectors are used for motion vector mapping. In the proposed
transcoder, the MPEG-4 encoder utilizes the motion vectors
and MB information contained in each MB in the H.264
bitstream, as shown in the dotted lines in Fig. 2, thereby
obviating the need to perform RDO (Rate-Distortion
Optimization) and brute- force ME/MC. The H.264 standard
adopts 1/4 pixel ME/MC, seven Inter-blocks, and Intra16× 16,
Intra4× 4 and SKIP blocks, as shown in Fig. 1(a). Therefore,
the block type conversion between the H.264 bitstream and the
MPEG-4 bitstream needs to be performed by transforming the
MB modes listed in Fig. 1(a) to those listed in Fig. 1(b). As a
reference, in the case where there is no residual data, the SKIP
mode in the H.264 standard can have the (0,0) motion vector or
the PMV (median Predicted Motion Vector), whereas the SKIP
mode in the MPEG-4 stand- ard can only have the (0,0) motion
vector.

Before developing the proposed transcoder using block
mode conversion, we investigated the block mode decision
results in the case of an H.264 to MPEG-4 cascade transcoder,
and the results are shown in Table II. The InterP8× 8 modes,
which amount to approximately 37.04% of the data in the
H.264 block modes, are converted into the Inter16 × 16
(22.52%), Inter8× 8 (12.88%) or SKIP (1.62%) mode in the
MPEG-4 block modes, in which the SKIP mode is considered
as the subset of the Inter16× 16 mode when the motion vector is
(0,0) and there is no residual data. The SKIP modes, which
amount to approx- imately 24.86% of the data in the H.264
block modes, are mostly converted into the Inter16× 16 block
mode in the MPEG-4 block modes. The Inter16× 16 modes,
which amount to approximately 18.77% of the data in the
H.264 block modes, are converted into the Inter16 × 16
(13.36%), SKIP (3.99%), INTER8× 8 (1.42%) in the MPEG-4
block modes. The Inter- 16 × 8 modes, which amount to
approximately 6.81% of the data, in the H.264 block modes are
converted into the Inter16× 16 (4.61%) or Inter8× 8 (1.23%)
block modes in the MPEG-4 block modes, and similar results
were also observed for the Inter8× 16 mode. The results for all
of the block mode conver- sions in cascade transcoding are
shown in Table II. The proposed transcoder is developed on the
basis of the block occurrence probabilities listed in Table II. Fig.
3 describes the process of conversion of the block modes in the
H.264 standard into the block modes in the MPEG-4 standard
based on the results shown in Table II.

SKIP

Inter
16×16

Inter
16×8

Inter
8×16

Inter
P8×8

Intra
16×16

Intra
4×4

Inter
8×8

Inter
8×4

Inter
4×8

Inter
4×4

MB
modes

MB
modes

SKIP

Inter
16×16

Inter
8×8

Intra
16×16

(a) (b)

Fig. 1. MB modes in video coding standards: (a) MB modes in the H.264
standard, (b) MB modes in the MPEG-4 standard.

Fig. 2. Cascaded pixel-domain transcoding.

TABLE II
THE BLOCK MODE CONVERSION RESULTS OF THE CASCADED TRANSCODER FROM THE H.264 MB MODES TO THE MPEG-4 MB MODES

 FOR VARIOUS TEST SEQUENCES.
Modes of the

 MPEG-4
Modes of the H.264

INTRA SKIP INTER
16× 16 INTER 8× 8 Total

Inter P8× 8 (Fig. 3(a)) 0.02% 1.62% 22.52% 12.88% 37.04%

Skip (Fig. 3(b)) 0.00% 23.01% 1.73% 0.12% 24.86%

Inter 16× 16 (Fig. 3(c)) 0.00% 3.99% 13.36% 1.42% 18.77%

Inter 16× 8 (Fig. 3(d)) 0.01% 0.96% 4.61% 1.23% 6.81%

Inter 8× 16 (Fig. 3(e)) 0.01% 0.76% 4.30% 1.40% 6.46%

Intra 16× 16, Intra 4× 4
(Fig. 3(f)) 1.33% 0.32% 2.23% 2.17% 6.05%

1568963561 3

1) Fig. 3(a) (H.264 MB mode is InterP8× 8):

Since the basic unit of the motion vector in the H.264
standard is the 4× 4 block, the 4× 4 block-based quarter-pixel
motion vectors, mvk,l, k,l=0,1,2,3, are used to obtain the average
Inter8× 8 mode quarter-pixel motion vector, a_mvi,j, as shown
in eq. (1):

2 12 1

, ,
2 2

_ 2 2, , 0,1
ji

i j k l
k i l j

a mv mv i j
++

= =

 = + >> =∑ ∑

 (1)

where the subscripts, i and j, denote the vertical and horizontal
average motion vector indices of the four 8× 8 blocks, and the
subscripts k and l denote the vertical and horizontal motion
vector indices of the sixteen 4× 4 sub-blocks in each MB of the
H.264 standard, respectively. Then, the block conversion pro-
cess is applied such that if the difference values among each
a_mvi,j vector are less than 5 and each a_mvi,j vector has the
same direction, then the Inter16 × 16 mode is selected,
otherwise the Inter8× 8 mode is selected. A threshold value of 5
was chosen based on two experiments. The first experiment
was performed in three cases. Case I is the conversion of the

H.264 MPEG-4
(a)

a_mv0,0 a_mv1,0

a_mv0,1 a_mv1,1

SKIP

when |Each Difference of
a_mvi,j| < 5

otherwise

Inter16× 16

or

Inter8× 8

InterP8× 8mv0,0 mv0,1 mv0,2 mv0,3

mv1,0 mv1,1 mv1,2 mv1,3

mv2,3

mv3,3

mv2,2

mv3,2

mv2,1mv2,0

mv3,1mv3,0 Intermediate MB

(b)
H.264 MPEG-4

(c)
H.264 MPEG-4

SKIP

Inter16× 16

SKIP

Inter16× 16

Inter16× 16

SKIP

(e)
H.264 MPEG-4H.264 MPEG-4

(d)

SKIP

otherwise

Inter16× 16

when |mv0 mv1| < 9

or

SKIP

otherwise

Inter16× 16

when |mv0 mv1| < 9

or

Inter8× 8Inter8× 8

Inter8× 16

mv1mv0

Inter16× 8

mv0

mv1

H.264

Intra16× 16

Intra

MPEG-4

Intra4× 4

(f)

Fig. 3. Block type conversion and motion vector mapping.

1568963561 4

MB mode including the InterP8× 8 blocks into the Inter16× 16
mode of the MPEG-4 block mode, Case II is the conversion of
the MB mode including the InterP8× 8 blocks into the Inter8× 8
mode of the MPEG-4 block mode, and Case III is the
conversion of the MB mode including the InterP8× 8 blocks
into the Inter16 × 16 or Inter8 × 8 mode (alternative method)
depending on the difference values between the a_mvi,j vectors,
as shown in Fig. 4. Fig. 4 shows that Case I provides a better
result than both Case II and Case III at low bitrates in terms of
the PSNR, Case II provides a better result than Case I and Case
III at high bitrates, and Case III (alternative method) using the
threshold T=5 which depends on the difference values between
each a_mvi,j vector provide intermediate results at all bitrates.

We selected the alternative method, since our target bitrates
are approximately 130 ~ 180 kbps for a mobile device.
However, Case I and Case II can also be applied, depending on
the application bandwidth. After applying the alternative
method using various thresholds in the second experiment, we
found that the best result was obtained when T is set to 5.

2) Fig. 3(b) (H.264 MB mode is SKIP):
The SKIP mode of the H.264 bitstream can be converted into

the SKIP mode or Inter16 × 16 mode of the MPEG-4 block
modes based on Table II. First of all, every SKIP mode in the
H.264 bitstream is changed into an Inter16× 16 mode in the
motion vector refinement process, since the SKIP mode of the
MPEG-4 standard is one of the Inter16× 16 modes when the
motion vector is (0,0) and CBP is zero. Then, the Inter16× 16
mode is converted into the SKIP mode, only if both the motion
vector of the Inter16 × 16 mode resulting from the motion
vector refinement process is zero and CBP is set to zero.
Otherwise, the mode is set to the Inter16 × 16 mode of the
MPEG-4 block mode. The motion vector refinement process
will be explained in Section II.B.

3) Fig. 3(c) (H.264 MB mode is Inter16× 16):

The Inter16× 16 mode can be converted into the Inter16× 16
mode or the SKIP mode, in accordance with the same rule as
that described above for the SKIP mode conversion.

4) Fig. 3(d) and (e) (H.264 MB mode is Inter16× 8 or Inter-
8× 16):

The two H.264 MB modes, Inter8× 16 and Inter16× 8, from
Table II can be converted into the Inter16× 16, Inter8× 8 or the
SKIP mode. First, the difference between the two motion
vectors is calculated in quarter-pixel units, i.e. |mv0-mv1|. If the
difference between the motion vectors is smaller than 9, and
mv0 and mv1 have the same direction, the Inter16× 16 block
mode is selected, otherwise the Inter8 × 8 block mode is
selected. The threshold value of 9 was obtained in a similar way
to that described in Fig. 4.

5) Fig. 3(f) (H.264 MB mode is Intra16× 16 or Intra4× 4):

The Intra16× 16 and Intra4× 4 block modes of the H.264
bitstream can be converted into the Intra16× 16, Inter16× 16, or
Inter8 × 8 mode of the MPEG-4 bitstream in the cascaded
transcoding process, as shown in Table II. However, in order to
reduce the computational complexity, the Intra16 × 16 and
Intra4 × 4 block modes of the H.264 bitstream are directly
converted into the Intra16× 16 mode of the MPEG-4 bitstream.
This direct conversion does not affect the PSNR value, since
this kind of Intra MB only amounts to 1.36% of the MPEG-4
bitstream.

B. Motion Vector Refinement
In order to improve the coding efficiency, which can be

degraded by the motion vector mapping calculations corre-
sponding to eq. (1), motion vector refinement is performed.
First of all, the quarter-pixel motion vector is 1/4 scaled to the
integer-pixel motion vector. A search for the ±1 integer-pixel
motion vector is performed, and then a half-pixel motion search
involving the eight-neighbor half-pixels immediately surround-
ing the integer-pixel motion vector is performed to find the best
half-pixel motion vector. To determine the optimum search
window of the integer motion vector to use for the motion
vector refinement, various search ranges in integer units were
experi- mented with. When a motion vector refinement search
window of ±1 was applied, the PSNR values of this search
window were almost saturated in comparison with those of a
higher motion vector refinement search window.

III. SIMULATION RESULTS
The proposed transcoding method was implemented using

the H.264 JM 7.3 decoder and the MPEG-4 MoMuSys-
FDIS-V1.0 encoder. In order to evaluate the performance of the
proposed transcoder, the PSNR values, bitrates and com-
putation times were analyzed for the “Foreman” sequence of
the QCIF (Quarter Common Intermediate Format), the “News”
sequence, “Paris” sequence and “Coast” sequence of the same
format, all of which have 300 frames. The H.264 frame rate was
set to 10 frames per second (fps) for the evaluation. For the
experiments, each sequence was compressed with the “I, P, P,
P,…” scheme, i.e. the first frame is an INTRA frame and the
other frames are all INTER frames without any B frames being
included. The computation times of the proposed transcoding
method were compared with those of the cascaded transcoding
method, as shown in Fig. 5. The average speed of the proposed
transcoder is 5.2 times higher than that of the cascaded

Foreman (QCIF → QCIF, 10Hz)

28

29

30

31

32

33

80 130 180 230 280

Bitrate (kbps)

PS
N

R
 (d

B
)

Cascade
Case I
Case II
Case III

Fig. 4. PSNR comparisons when case I (all 16×16), case II (all 8×8), and case
III (alternative method) are applied for various bitrates.

1568963561 5

transcoding method. Quantization values of 30 and 12 were
used in the H.264 and MPEG-4 bitstreams, respectively, for our
target bitrates.

Fig. 6 shows the plots of the PSNR-bitrate for the cascaded
transcoding method vs. that of the proposed transcoding
method. The PSNR of the proposed method is almost the same
as that of the cascaded transcoding method for the “News” and
“Paris” sequences, and is 0.2 dB higher than that of the of the
cascaded transcoding method in the case of the “Foreman”
sequence. However, the PSNR of the proposed method is 0.3

dB lower than that of the cascade transcoding method in the
case of the low bitrate “Coast” sequence. According to our
experiment results, the performance of the proposed
transcoding method is almost identical to that of the cascaded
transcoding method.

IV. CONCLUSION
We developed a low-complexity H.264 to MPEG-4 video

transcoder by re-using the 4 × 4 block based-H.264 motion
vectors and utilizing H.264 MB information. Through the
results of the simulation, we showed that the proposed trans-
coding method is able to reduce the computational complexity
without degrading the video quality. Therefore, the proposed
transcoding method can be used in practical multimedia
applications, such as digital libraries and video adaptations, in
which the users only have an MPEG-4 compatible terminal.

REFERENCES
[1] J. Jeongnam Youn, M.T. Sun, and C.W. Lin, “Motion Vector Refinement

for High Performance Transcoding,” IEEE Trans. Multimedia, vol.1,
no.1, pp.30~40, March 1999.

[2] A. Vetro, C. Christopoulos, and H. Sun, “Video Transcoding
Architectures and Techniques: An Overview,” IEEE Signal Processing
Magazine, March 2003. pp18-29.

[3] P. Yin, M. Wu, and B. Lui and H. Sun, “Drift compensation for reduced
spatial resolution transcoding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, pp.1009-1020, Nov. 2002.

QCIF → QCIF, 10Hz

0

0.2

0.4

0.6

0.8

1

Foreman Coast News Paris

R
el

at
iv

e
Ti

m
e

Cascaded
Proposed

Fig. 5. Transcoding time comparisons between the cascaded and proposed
transcoding methods, in which a relative time comparison is performed for
various QCIF sequences.

Foreman (QCIF → QCIF, 10Hz)

28

29

30

31

32

33

80 130 180 230 280

Bitrate (kbps)

PS
N

R
 (d

B
)

Cascaded
Proposed

News (QCIF → QCIF, 10Hz)

28

29

30

31

32

33

34

40 90 140
Bitrate (kbps)

PS
N

R
 (d

B
)

Cascaded
Proposed

Paris (QCIF → QCIF, 10Hz)

26
27
28
29
30
31
32
33

60 110 160 210 260 310
Bitrate (kbps)

PS
N

R
 (d

B
)

Cascaded
Proposed

Coast (QCIF → QCIF, 10Hz)

27

28

29

30

31

80 130 180 230 280 330
Bitrate (kbps)

PS
N

R
 (d

B)

Cascaded
Proposed

Fig. 6. Comparisons of the PSNR between the cascaded and proposed transcoding methods.

1568963561 6

[4] P. Assuncao and M. Ghanbari, ”A frequency Domain video transcoder for
dynamic bit-rate reduction of MPEG-2 bitstreams,” IEEE Trans. Circuits
Syst. Video Technol., vol. 8, pp.953~967,Dec. 1998.

[5] H. Sun, W. Kwok, and J. W. Zdepski, “Architectures for MPEG
compressed bitstream scaling,” IEEE Trans. Circuits Syst. Video
Technol., vol.6, pp. 191-199, Apr. 1996.

[6] Tomas Wiegand, Joint Final Committee Draft(JFCD) of joint Vide
specification(ITU-T Rec. H.264 |ISO/ICE 1449-10 AVC), JVT-G050,
March 2003.

[7] Weiping Li, Jens-Rainer Ohm, Mihaela van der Schaar, Hong Jiang,
Shipeng Li, “MPEG-4 Video Verification version 17.0”, ISO|IEC
JTC1|SC29|WG11 N3515, July 2000.

[8] Peter List, Anthony Joch, Jani Lainema, Gisle Bjøntegaard, and Marta
Karczewicz, “Adaptive Deblocking Filter,” IEEE Trans. Circuits Syst.
Video Technol., vol.13, no.7, pp. 614-619, Jul. 2003.

	Print:
	Go Main:
	Go Back:
	Next Page:
	Copyright info:

